Glikogen ya iku polisakarida glukosa rantai akéh sing dadi salah sawijining bentuk panyimpenan energi ing kewan,[2] jamur, lan bakteri.[3] Struktur polisakarida nuduhaké wujud panyimpenan utama glukosa ing awak. Fungsi glikogen minangka salah siji saka rong bentuk cadangan energi, glikogen kanggo jangka pendek lan bentuk liyané yaiku toko trigliserida ing jaringan adipose (yaiku lemak awak) kanggo panyimpenan jangka panjang. Ing manungsa, glikogen digawé lan disimpen utamané ing sel ati lan otot balung.[4][5] Ing ati, glikogen bisa ngasilaké 5-6% bobot seger organ, lan ati saka wong diwasa, bobote 1,5 kg, bisa disimpen udakara 100-120 gram glikogen.[4][6] Ing otot balung, glikogen ditemokaké ing konsentrasi kurang (1-2% massa otot) lan otot balung kanggo wong diwasa kanthi bobote 70 toko kg udakara 400 gram glikogen.[4]

visualisasi lintas bagean skematik glikogen: Protein inti glikogenin dikepung karo cabang-cabang unit glukosa. Kabeh granula global bisa ngemot udakara 30.000 unit glukosa.[1]
Tampilan struktur atom saka siji untai unit glukosa ing molekul glikogen.
Glikogen (granula ireng) ing spermatozoa saka cacing pipih; mikroskop elektron transmisi, skala: 0,3 m

Jumlah glikogen sing disimpen ing awak, utamané ing otot lan ati, biasané gumantung karo latihan fisik, tingkat metabolisme basal, lan pola makan [7] (khusus serat tipe oksidatif 1 [8][9] ). Tingkat glikogen otot istirahat sing beda bisa digayuh kanthi ngganti jumlah partikel glikogen, tinimbang nambah ukuran partikel sing ana [9] sanajan umume partikel glikogen ing istirahat luwih cilik tinimbang maksimal teoritis.[10] Jumlah glikogen uga akéh ditemokaké ing jaringan lan sel liyané, kalebu ginjel, sel getih abang,[11][12][13] sel getih putih,[14] lan sel glial ing otak .[15] Rahim uga nyimpen glikogen sajrone meteng kanggo menehi nutrisi kanggo embrio.[16]

Kira-kira 4 gram glukosa ana ing getih manungsa sawayah-wayah;[4] ing individu sing pasa, glukosa getih tetep tetep ing level iki kanthi biaya nyimpen glikogen ing ati lan otot balung.[4] Toko glikogen ing otot balung minangka salah sawijining panyimpenan energi kanggo otot kasebut;[4] Nanging, gangguan glikogen otot ngalangi penyerapan glukosa otot saka getih, saengga nambah jumlah glukosa getih sing kasedhiya kanggo digunakaké ing jaringan liya.[4] Toko glikogen ati dadi toko glukosa kanggo digunakaké ing awak, utamané sistem saraf pusat .[4] Otak manungsa nganggo udakara 60% glukosa getih ing individu sing cepet lan ora aktif.[4]

Glikogen minangka analog pati, polimer glukosa sing fungsine minangka panyimpenan energi ing tanduran . Nduweni struktur sing padha karo amylopectin (komponen pati), nanging luwih akéh bercabang lan kompak tinimbang pati. Kalorone minangka bubuk putih ing kahanan garing. Glikogen ditemokaké ing bentuk granula ing sitoskol / sitoplasma ing pirang-pirang jinis sel, lan duwe peran penting ing siklus glukosa . Glikogen dadi cadangan energi sing bisa cepet dikepungaké kanggo nyukupi kebutuhan glukosa, nanging glukosa sing kurang kompak tinimbang cadangan energi trigliserida ( lipid ). Kuwi uga ditemokaké minangka cadangan panyimpenan ing akéh protokol parasit.[17][18][19]

Struktur saka Glikogen

besut
 
Hubungan 1,4-α-glycosidic ing oligomer glikogen
 
Hubungan 1,4-α-glycosidic lan 1,6-glikosidik ing oligomer glikogen

Glikogen minangka biopolimer bercabang sing kalebu rantai linear residu glukosa kanthi dawa rantai rata-rata udakara 8-12 unit glukosa lan 2.000-60.000 residu saben molekul glikogen.[20][21] Unit glukosa digandhengaké kanthi linear kanthi ikatan glikosida α (1 → 4) saka siji glukosa menyang glukosa liyané. Cabang digandhengaké karo rantai sing diikat saka glikosidik α (1 → 6) antara glukosa pertama cabang anyar lan glukosa ing rantai batang.[22] Amarga cara glikogen disintesis, saben granul glikogen duwe inti protein glikogenin.[23]

Glikogen ing sel otot, ati, lan lemak disimpen ing bentuk hidrasi, kasusun saka telu utawa patang bagean banyu saben bagean glikogen sing ana gandhengané karo 0,45 millimole (18 mg) kalium saben gram glikogen.[24] Glukosa minangka molekul osmosis, lan bisa mengaruhi tekanan osmosis ing konsentrasi dhuwur sing bisa nyebabaké kerusakan sel utawa mati yen disimpen ing sel tanpa dimodifikasi.[3] Glikogen minangka molekul non-osmosis, mula bisa digunakaké minangka solusi kanggo nyimpen glukosa ing sel tanpa ngganggu tekanan osmosis.[3]

Fungsine Glikogen

besut

Ing Ati

besut

Ana ing panganan sing ngemot karbohidrat utawa protein sing dipangan lan dicerna, tingkat glukosa getih mundhak, lan pankreas gawé insulin . Glukosa getih saka vena portal lumebu ing sel ati ( hepatosit ). Insulin tumindak ing hepatosit kanggo ngrangsang tumindak sawétara enzim, kalebu sintesis glikogen . Molekul glukosa ditambahaké ing rantai glikogen sajrone insulin lan glukosa isih akéh. Ing kahanan postprandial utawa "panganan" iki, ati njupuk luwih akéh glukosa saka getih tinimbang sing dibabaraké.

Sawise panganan dicerna lan tingkat glukosa wiwit mudhun, sekresi insulin dikurangi, lan sintesis glikogen mandheg. Yen dibutuhaké kanggo energi, glikogen dipecah lan malih dadi glukosa. Fosforilase glikogen minangka enzim utama gangguan glikogen. Sajrone 8-12 jam sabanjure, glukosa sing asale saka glikogen ati minangka sumber utama glukosa getih sing digunakaké dening sisa awak kanggo bahan bakar.

Glukagon, hormon liya sing diproduksi dening pankreas, ing pirang-pirang aspek minangka countersignal kanggo insulin. Kanggo nanggepi tingkat insulin sing kurang normal (nalika kadar glukosa getih mudhun ing kisaran normal), glukagon disekresi nambah jumlah lan ngrangsang kalorone glikogenolisis (pemecahan glikogen) lan glukoneogenesis (produksi glukosa saka sumber liyané).

Ing Otot

besut

Glikogen sel otot bisa uga digunakaké minangka sumber glukosa sing kasedhiya kanggo sel otot. Sel liyané sing ngemot jumlah sithik nggunakaké lokal uga. Amarga sel otot ora duwe glukosa-6-fosfatase, sing dibutuhaké kanggo ngirim glukosa menyang getih, glikogen sing disimpen kasedhiya mung kanggo panggunaan internal lan ora dituduhaké karo sel liyané. Iki beda karo sel ati, sing, yen dikarepaké, gampang ngilangi glikogen sing disimpen dadi glukosa lan dikirim liwat aliran getih minangka bahan bakar kanggo organ liya.[25]

Sejarahe Glikogen

besut

Glikogen ditemokaké dening Claude Bernard. Eksperimen kasebut nuduhaké manawa ati ngemot zat sing bisa nyebabaké nyuda gula kanthi tumindak "fermentasi" ing ati. Ing taun 1857, dheweke nerangaké isolasi zat sing diarani " la matière glycogène ", utawa "zat pembentuk gula". Ora suwe sawise ditemokaké glikogen ing ati, A. Sanson nemokaké manawa jaringan otot uga ngemot glikogen. Formula empiris kanggo glikogen saka ( C6H10O5 ) n diadegaké karo Kekulé ing taun 1858.[26]

Paripustaka

besut
  1. McArdle, William D.; Katch, Frank I.; Katch, Victor L. (2006). Exercise physiology: Energy, nutrition, and human performance (édhisi ka-6th). Lippincott Williams & Wilkins. kc. 12. ISBN 978-0-7817-4990-9.
  2. Sadava, David E.; Purves, William K.; Hillis, David M.; Orians, Gordon H.; Heller, H. Craig (2011). Life (édhisi ka-9th, International). W. H. Freeman. ISBN 9781429254311.
  3. a b c Berg JM, Tymoczko JL, Gatto GJ, Stryer L (2015-04-08). Biochemistry (édhisi ka-Eighth). New York: W. H. Freeman. ISBN 9781464126109. OCLC 913469736.
  4. a b c d e f g h i "Four grams of glucose". American Journal of Physiology. Endocrinology and Metabolism. 296 (1): E11–21. January 2009. doi:10.1152/ajpendo.90563.2008. PMC 2636990. PMID 18840763. Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. ... The brain consumes ∼60% of the blood glucose used in the sedentary, fasted person. ... The amount of glucose in the blood is preserved at the expense of glycogen reservoirs (Fig. 2). In postabsorptive humans, there are ∼100 g of glycogen in the liver and ∼400 g of glycogen in muscle. Carbohydrate oxidation by the working muscle can go up by ∼10 fold with exercise, and yet after 1 h, blood glucose is maintained at ∼4 g.
  5. "Glycogen storage: Illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition" (PDF). The American Journal of Clinical Nutrition. 56 (1, Suppl): 292s–293s. 1992. doi:10.1093/ajcn/56.1.292S. PMID 1615908.
  6. Guyton, Arthur C.; Hall, John Edward (2011). Guyton and Hall Textbook of Medical Physiology. New York, New York: Saunders/Elsevier. ISBN 978-5-98657-013-6.
  7. Bergström, Jonas; Hermansen, Lars; Hultman, Eric; Saltin, Bengt (1967). "Diet, Muscle Glycogen and Physical Performance". Acta Physiologica Scandinavica (ing basa Inggris). 71 (2–3): 140–150. doi:10.1111/j.1748-1716.1967.tb03720.x. ISSN 1365-201X. PMID 5584523.
  8. Jensen, Rasmus; Ørtenblad, Niels; Stausholm, Marie-Louise Holleufer; Skjærbæk, Mette Carina; Larsen, Daniel Nykvist; Hansen, Mette; Holmberg, Hans-Christer; Plomgaard, Peter; Nielsen, Joachim (2020). "Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men". The Journal of Physiology (ing basa Inggris). 598 (19): 4271–4292. doi:10.1113/JP280247. ISSN 1469-7793. PMID 32686845.
  9. a b Jensen, Rasmus; Ørtenblad, Niels; Stausholm, Marie‐Louise H.; Skjærbæk, Mette C.; Larsen, Daniel N.; Hansen, Mette; Holmberg, Hans‐Christer; Plomgaard, Peter; Nielsen, Joachim (May 2021). "Glycogen supercompensation is due to increased number, not size, of glycogen particles in human skeletal muscle". Experimental Physiology (ing basa Inggris). 106 (5): 1272–1284. doi:10.1113/EP089317. ISSN 0958-0670. PMID 33675088.
  10. Marchand, I.; Chorneyko, K.; Tarnopolsky, M.; Hamilton, S.; Shearer, J.; Potvin, J.; Graham, T. E. (2002-11-01). "Quantification of subcellular glycogen in resting human muscle: granule size, number, and location". Journal of Applied Physiology (ing basa Inggris). 93 (5): 1598–1607. doi:10.1152/japplphysiol.00585.2001. ISSN 8750-7587. PMID 12381743.
  11. "Glycogen metabolism in the normal red blood cell". Blood. 40 (6): 836–843. December 1972. doi:10.1182/blood.V40.6.836.836. PMID 5083874.
  12. "Glycogen content and release of glucose from red blood cells of the sipunculan worm themiste dyscrita" (PDF). J Exp Biol. 129: 141–149. 1987. doi:10.1242/jeb.129.1.141.
  13. "An improved quantitative assay of glycogen in erythrocytes". Annals of Clinical Biochemistry. 39 (Pt 6): 612–13. November 2002. doi:10.1258/000456302760413432. PMID 12564847.
  14. Murray, Bob (April 2018). "Fundamentals of glycogen metabolism for coaches and athletes". Nutrition Reviews. 76 (4): 243–259. doi:10.1093/nutrit/nuy001. PMC 6019055. PMID 29444266.
  15. "Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns". Glia. 64 (9): 1532–1545. June 2016. doi:10.1002/glia.23020. PMC 5094520. PMID 27353480.
  16. Campbell, Neil A.; Williamson, Brad; Heyden, Robin J. (2006). Biology: Exploring Life. Boston, MA: Pearson Prentice Hall. ISBN 978-0-13-250882-7.
  17. Ryley, J.F. (March 1955). "Studies on the metabolism of the protozoa. 5: Metabolism of the parasitic flagellate Trichomonas foetus". The Biochemical Journal. 59 (3): 361–369. doi:10.1042/bj0590361. PMC 1216250. PMID 14363101.
  18. Benchimol, Marlene; Elias, Cezar Antonio; de Souza, Wanderley (December 1982). "Tritrichomonas foetus: Ultrastructural localization of calcium in the plasma membrane and in the hydrogenosome". Experimental Parasitology. 54 (3): 277–284. doi:10.1016/0014-4894(82)90036-4. ISSN 0014-4894. PMID 7151939.
  19. Mielewczik, Michael; Mehlhorn, Heinz; al Quraishy, Saleh; Grabensteiner, E.; Hess, M. (1 September 2008). "Transmission electron microscopic studies of stages of histomonas meleagridis from clonal cultures". Parasitology Research (ing basa Inggris). 103 (4): 745–750. doi:10.1007/s00436-008-1009-1. ISSN 0932-0113. PMID 18626664.
  20. Manners, David J. (1991). "Recent developments in our understanding of glycogen structure". Carbohydrate Polymers. 16 (1): 37–82. doi:10.1016/0144-8617(91)90071-J. ISSN 0144-8617.
  21. Ronner, Peter (2018). Netter's Essentials Biochemistry. USA: Elsevier. kc. 254. ISBN 978-1-929007-63-9.
  22. Berg, Tymoczko, & Stryer (2012). Biochemistry (édhisi ka-7th, International). W. H. Freeman. kc. 338. ISBN 978-1429203142.{{cite book}}: CS1 maint: uses authors parameter (link)
  23. Berg; et al. (2012). Biochemistry (édhisi ka-7th, International). W. H. Freeman. kc. 650.
  24. "Glycogen storage: Illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition" (PDF). The American Journal of Clinical Nutrition. 56 (1, Suppl): 292s–293s. 1992. doi:10.1093/ajcn/56.1.292S. PMID 1615908.
  25. "Glycogen Biosynthesis; Glycogen Breakdown". oregonstate.edu. Diarsip saka sing asli ing 2021-05-12. Dibukak ing 2018-02-28.
  26. Young, F.G. (22 June 1957). "Claude Bernard and the discovery of glycogen". British Medical Journal. 1 (5033): 1431–1437. doi:10.1136/bmj.1.5033.1431. JSTOR 25382898. PMC 1973429. PMID 13436813.