Transistor sambungan dwikutub: Béda antara owahan

Konten dihapus Konten ditambahkan
c éjaan using AWB
Arupako (parembugan | pasumbang)
c éjaan, replaced: yaiku → ya iku, desa → désa (6) using AWB
Larik 21:
=== Pengendalian tegangan, arus lan muatan ===
Arus kolektor-emitor saged dipuntingali dados terkendali arus basis-emitor (kendali arus) utawi tegangan basis-emitor (kendali tegangan). Pandangan kasebut gegayutan kaliyan hubungan arus-tegangan saking pertemuan basis-emitor, ing pundhi namung meniks kurva arus-tegangan eksponensial biasa saking diode pertemuan p-n.<ref name="hh">{{cite book|author=[[Paul Horowitz]] and [[Winfield Hill]]|title=[[The Art of Electronics]]|edition=2nd|year=1989|publisher=Cambridge University Press|isbn=9780521370950|url=http://books.google.com/books?id=bkOMDgwFA28C&pg=PA113&dq=bjt+charge+current+voltage+control+inauthor:horowitz+inauthor:hill&as_brr=0&ei=A33kRuT6Co3goAKF5pSqCw&sig=EmoHsk3zMEtvV1VYKR65A4I1SCM}}</ref>
Penjelasan fisika kangge arus kolektor inggih punika jumlah muatan pembawa minoritas ing daerah basis.<ref name=hh/><ref>{{cite book|title=Semiconductor Device Physics and Simulation|author=Juin Jei Liou and Jiann S. Yuan|publisher=Springer|year=1998|isbn=0306457245|url=http://books.google.com/books?id=y343FTN1TU0C&pg=PA166&dq=charge-controlled+bjt+physics&as_brr=0&ei=l9viRqilEIjopQL_i6WFDg&sig=vXciSaFRmNUmg3KIhmBX7DCiVOA}}</ref><ref>{{cite book|title=Transistor Manual|author=General Electric|edition=6th|year=1962|page=12}} "If the principle of space charge neutrality is used in the analysis of the transistor, it is evident that the collector current is controlled by means of the positive charge (hole concentration) in the base region. ... When a transistor is used at higher frequencies, the fundamental limitation is the time it takes the carriers to diffuse across the base region..." (same in 4th and 5th editions)</ref> Model mendetail dari kerja transistor, [[model Gummel–Poon]], menghitung distribusi dari muatan tersebut secara eksplisit untuk menjelaskan perilaku transistor dengan lebih tepat.<ref>{{cite book|title=Semiconductor Device Modeling with Spice|author=Paolo Antognetti and Giuseppe Massobrio|publisher=McGraw–Hill Professional|year=1993|isbn=0071349553|url=http://books.google.com/books?id=5IBYU9xrGaIC&pg=PA96&dq=gummel-poon+charge+model&as_brr=3&ei=v4TkRp-4Gp2cowLM7bnCCw&sig=vYrycIhlQKCq7VmoK231pjYXPyU#PPA98,M1}}</ref> Pandangan ngenai kendali-muatan kaliyan gampil nangani transistor-foto, ing pundhi mbeta minoritas ing daerah basis dipunbangkitaken dening penyerapan foton, lan nangani pematian dinamik utawi wekdal pulih, ing pundhi gumantung ing penggabungan malih muatan ing daerah basis. menawi mekaten, amargi muatan basis punika boten isyarat ingkang saged dipunukur ing saluran, pandangan kendali arus lan tegangan biasanipun dipunginaaken ing desaindésain lan analisis sirkuit.
Ing desaindésain sirkuit analog, pandangan kendali arus asring dipunginaaken amargi punika linier. Arus kolektor kinten-kinten <math>\beta_F</math> kali lipat saking arus basis. Pinten-pinten sirkuit dasar saged dipundesaindipundésain kaliyan mengasumsiaken menawi tegangan emitor-basis kinten-kinten ajeg, lan arus kolektor inggih punika beta kali lipat saking arus basis. Menawi mekaten, kangge ndesainndésain sirkuit BJT kaliyan akurat lan saged dipunandalaken, dipunbetahaken model kendali-tegangan (dados tuladha [[model Ebers–Moll]])<ref name=hh/>. Model kendali-tegangan mbetahaken fungsi eksponensial ingkang kedhah dipunperhitungaken, menawi punika dipunlinieraken, transistor saged dimodelaken dados sebuah transkonduktansi, kadasta ing [[model Ebers–Moll]], desaindésain kangge sirkuit kadasta penguat diferensial dados prekawis linier, dados pandangan kontrol-tegangan asring dipunutamakaken. Kangge sirkuit translinier, ing pundhi kurva eksponensiak I-V inggih punika kunci saking operasi, transistor biasanipun dipunmodelaken dados terkendali tegangan kaliyan transkonduktansi sebanding kaliyan arus kolektor.
=== Parameter ''alfa'' (α) lan ''beta'' (β) transistor ===
Perbandingan elektron igkang betah ngelintasi basis lan gayuh kolektor inggih punika ukuran saking efisiensi transistor. Pengotoran cerat ing daerah emitor lan pengotoran ringan ing daerah basis nyebabaken langkung katah elektron ingkang dipuninjeksiaken saking emitor ing basis menawi lubang ingkang diinjeksiaken saking basis ing emitor. Penguatan arus moda tunggal emitor dipunwakili dening β<sub>F</sub> atau h<sub>fe</sub>, punika kinten-kinten sami kaliyan perbandingan arus DC kolektor kaliyan arus DC basis ing daerah aktif-maju. Punika biasanipun langkung ageng saking 100 kangge transistor isyarat alit, ananging bisa sangat rendah, utaminipun ing transistor ingkang dipundesaindipundésain kangge penggunaan daya inggil. Parameter ingkang wigati sanesipun inggih punika penguatan arus tunggal-basis, α<sub>F</sub>. Penguatan arus tunggal-basis kinten-kinten inggih punika penguatan arus saking emitor ing kolektor ing daerah aktif-maju. bantenipun biasanipun nyeraki setunggal, ing antawisipun 0,9 lan 0,998.
Alfa lan beta langkung tepate gegayutan kaliyan rumus mekaten (transistor NPN):
::<math>\alpha_T = \frac{I_{\text{C}}}{I_{\text{E}}}</math>
Larik 33:
[[Gambar:npn BJT cross section.PNG|jmpl|thumb|Irisan transistor NPN yang disederhanakan]]
[[Gambar:Transistor-die-KSY34.jpg|jmpl|thumb|Kepingan transistor NPN frekuensi tinggi KSY34, basis dan emitor disambungkan melalui ikatan kawat]]
BJT kaperang saking tiga daerah semikonduktor ingkang benten pengotoranipun, yaikuya iku daerah ''emitor'', daerah ''basis'' lan daerah ''kolektor''. Daerah-daerah kasebut inggih punika tipe-p, tipe-n lan tipe-p ing transistor PNP, lan tipe-n, tipe-p dan tipe-n ingtransistor NPN. Saben daerah semikonduktor dipunsambungaken ing saluran ingkang ugi dipunasmani ''emitor'' (E), ''basis'' (B) lan ''kolektor'' (C).
 
== Cathetan Suku ==