Siklus karbon minangka siklus biogeokimia, perputeran karbon ing wilayah biosfer, pedosfer, geosfer, hidrosfer, lan atmosfer Bumi. Karbon minangka komponén utama senyawa biologis uga komponén utama akèh mineral kayata watu gamping. Bebarengan karo siklus nitrogen lan siklus banyu, siklus karbon kalebu urutan kedadéyan sing dadi kunci supaya bumi bisa urip. Iki nggambaraké gerakan karbon amarga didaur ulang lan digunakaké manèh ing saindenging biosfer, uga prosès jangka dawa karbonisasi lan mbebasaké saka karbon kependhem. Karbon kependhem ing daratan lan samodra saiki njupuk udakara seperempat emisi karbon antropogenik saben taun. Manungsa wis ngganggu siklus karbon biologis nganti pirang-pirang atus taun kanthi modifikasi panggunaan lahan,[1] lan malih karo penambangan karbon fosil skala industri (batu bara, èkstraksi minyak bumi lan gas, lan pabrik semen) saka geosfer.[2] Karbon dioksida ing atmosfer mundhak meh 52% tinimbang level pra-industri ing taun 2020[3], meksa panas lan permukaan bumi luwih gedhé dening srengéngé.[4] Peningkatan karbon dioksida uga nambah asem ing permukaan sagara udakara 30% amarga karbon dioksida larut[5], asem karbonat lan senyawa liyané, lan dhasar bisa ngganti kimia laut.[6] Mayoritas karbon fosil wis diekstrak sajroné setengah abad kepungkur, lan béya sansaya akèh kanthi cepet[7], nyumbang kanggo owah-owahan iklim sing disebabaké dening manungsa.[8] Konsekuensi paling gedhé kanggo siklus karbon, lan biosfer sing kritis nyebabaké peradaban manungsa[9], isih bisa diwiwiti amarga inersia gedhé ing Bumi sing durung diwatesi.[10] Balèkné keseimbangan sistem alam iki minangka prioritas internasional, sing dijlentrehaké ing Perjanjian Iklim Paris lan Ancas Pambangunan Berkelanjutan 13.

Siklus karbon sing cepet nuduhaké gerak karbon ing antarané lemah, atmosfer, lan sagara karbon ing antarané lemah, atmosfer, lan samodra iki kanthi milyaran ton (gigaton) saben taun. Nomer kuning minangka fluks alami, abang minangka kontribusi manungsa, lan putih minangka karbon sing disimpen. Èfèk saka siklus karbon alon, kayata aktivitas vulkanik lan téktonik ora kalebu.[1]

Komponén utama siklus karbon besut

Siklus karbon pisanan diterangaké dening Antoine Lavoisier lan Joseph Priestley, lan dipopuleraké dening Humphry Davy.[11] Siklus karbon global saiki biasané dipérang dadi tadhah utama karbon ing ngisor iki sing gegandhengan karo jalur ijol-ijolan:[12]

  • Atmosfer
  • Biosfer terestrial
  • Samodra
  • Endhapan,
  • Interior bumi (mantel lan kerak).

Pertukaran karbon ing antarané waduk kedadéyan amarga macem-macem prosès kimia, fisik, geologis, lan biologis. Samodra ngemot kolam aktif karbon paling gedhé cedhak lumahing Bumi.[13] Aliran karbon alami ing antarané atmosfer[14], sagara, ekosistem darat, lan endhepan cukup imbang saéngga kadar karbon stabil kira-kira tanpa pengaruh manungsa.[15]

Siklus karbon jero besut

Sanajan siklus karbon jero durung dingertèni kaya gerakan karbon liwat atmosfer, biosfer terestrial, samodra, lan geosfer, nanging kalebu prosès sing penting.[16] Siklus karbon jero gegandhengan karo gerakan karbon ing permukaan lan atmosfer Bumi. Yèn prosès kasebut ora ana, karbon bakal tetep ana ing atmosfer, mula bakal saya akèh nganti suwé banget.[17] Mula kanthi ngidini karbon bali menyang Bumi, siklus karbon jero nduwèni peranan penting kanggo njaga kahanan terestrial sing dibutuhané supaya urip terus.

Paripustaka besut

  1. a b Riebeek, Holli (16 Juni 2011). "The Carbon Cycle". Earth Observatory. NASA. Diarsip saka sing asli ing 5 Maret 2016. Dibukak ing 5 April 2018.
  2. Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Hauck, J., Peters, G., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C. and 66 others (2019) "Global carbon budget 2019". Earth System Science Data, 11(4): 1783–1838. doi:10.5194/essd-11-1783-2019.   Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  3. Prentice, I.C. (2001). "The carbon cycle and atmospheric carbon dioxide". Ing Houghton, J.T. (èd.). Climate change 2001: the scientific basis: contribution of Working Group I to the Third Assessment Report of the Intergouvernmental Panel on Climate Change. hdl:10067/381670151162165141.
  4. "The NOAA Annual Greenhouse Gas Index (AGGI) - An Introduction". NOAA Global Monitoring Laboratory/Earth System Research Laboratories. Dibukak ing 2020-10-30.
  5. "Report of the Ocean Acidification and Oxygen Working Group, SCOR Biological Observatories Workshop" (PDF). scor-int.org/. International Council for Science's Scientific Committee on Ocean Research (SCOR). 2009-09-30.
  6. "What is Ocean Acidification?". National Ocean Service, National Oceanic and Atmospheric Administration. Dibukak ing 2020-10-30.
  7. Hannah Ritchie and Max Roser (2020). "CO₂ and Greenhouse Gas Emissions: CO₂ Emissions by Fuel". Our World in Data. Published online at OurWorldInData.org. Dibukak ing 2020-10-30.
  8. Heede, R. (2014). "Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010". Climatic Change. 122 (1–2): 229–241. Bibcode:2014ClCh..122..229H. doi:10.1007/s10584-013-0986-y.
  9. Rockström, Johan; et al. (2009). "Planetary Boundaries: Exploring the Safe Operating Space for Humanity". Ecology and Society. 14 (2). doi:10.5751/ES-03180-140232.
  10. Steffen, W.; et al. (2015). "Planetary boundaries: Guiding human development on a changing planet". Science. 347 (6223): 1259855. doi:10.1126/science.1259855. PMID 25592418.
  11. Holmes, Richard (2008). "The Age Of Wonder", Pantheon Books. ISBN 978-0-375-42222-5.
  12. Archer, David (2010). The global carbon cycle. Princeton: Princeton University Press. ISBN 9781400837076.
  13. Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P. (2000). "The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System". Science. 290 (5490): 291–296. Bibcode:2000Sci...290..291F. doi:10.1126/science.290.5490.291. PMID 11030643.
  14. Prentice, I.C. (2001). "The carbon cycle and atmospheric carbon dioxide". Ing Houghton, J.T. (èd.). Climate change 2001: the scientific basis: contribution of Working Group I to the Third Assessment Report of the Intergouvernmental Panel on Climate Change. hdl:10067/381670151162165141.
  15. "An Introduction to the Global Carbon Cycle" (PDF). University of New Hampshire. 2009. Diarsip saka sing asli (PDF) ing 8 Oktober 2016. Dibukak ing 6 Fèbruari 2016.
  16. Wong, Kevin; Mason, Emily; Brune, Sascha; East, Madison; Edmonds, Marie; Zahirovic, Sabin (2019). "Deep Carbon Cycling over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings". Frontiers in Earth Science. 7: 263. Bibcode:2019FrEaS...7..263W. doi:10.3389/feart.2019.00263.
  17. "The Deep Carbon Cycle and our Habitable Planet | Deep Carbon Observatory". deepcarbon.net. Diarsip saka sing asli ing 2020-07-27. Dibukak ing 2019-02-19.